International

Where are you?

To give you the most accurate information about our products and what we can do for you, we need to direct you to the right site.

image/svg+xml

Press Release, 25 June 2024

Kuros Biosciences Announces Peer-Reviewed Publication of MagnetOs MAXA Level 1 Study Outcomes in Spine, Indicating Superiority Over Autograft

 

Schlieren (Zurich), Switzerland, June 25, 2024 – Kuros Biosciences, a leader in next generation bone healing technologies, today announced the publication of a peer-reviewed manuscript that details the clinical data of its MAXA Level 1 prospective, multi-center, randomized, intra-patient controlled clinical study in Spine1.
 
Published clinical results of “Efficacy of Biphasic Calcium Phosphate Ceramic with a Needle-shaped Surface Topography Versus Autograft in Instrumented Posterolateral Spinal Fusion: A Randomized Trial” include fusion data on 91 patients and 128 segments with 1-year follow-up after surgery. As previously reported and now detailed in the peer-reviewed publication, the data demonstrates:

  • MagnetOsTM effectiveness as a standalone* alternative to autograft in challenging posterolateral fusions (PLF);
  • Nearly double the fusion rate as compared to autograft in PLF, showing a 79% overall fusion rate with MagnetOs as independently measured with fine-cut CT, compared to 47% for autograft, which included difficult-to-treat patients of current and former smokers (n=19 and 35 respectively); and
  • Noninferiority of MagnetOs versus autograft per study design, with primary outcome analysis even indicating MagnetOs superiority.

“We are extremely pleased to share the results of the MAXA study with the medical community,” said Moyo C. Kruyt, MD, PhD, lead researcher in the MAXA study. “The MAXA study demonstrates for the first time that an advanced synthetic bone substitute likely performs better than the current gold standard autograft in a challenging posterolateral fusion location.” 

Chris Fair, Chief Executive Officer of Kuros, said, “Kuros is committed to supporting clinical research and providing evidence-based solutions for next generation bone healing technologies.  This study’s acceptance and publication in Spine is proof of that commitment.” Fair continued, “We commend Professor Kruyt and his team for their independent efforts and their desire to provide the spine community and their patients with a robust level 1 study that supports the use of MagnetOs for difficult to treat patients and highlights a viable alternative to autograft.”

The publication, which includes additional details such as study design, patient demographics, inclusion/exclusion criteria, and complications reported in the study, can be accessed on the Spine website and is also available on the Kuros Biosciences website.

1.    Stempels, H. et al., “Efficacy of biphasic calcium phosphate ceramic with a needle-shaped surface topography versus autograft in instrumented posterolateral spinal fusion: A randomized trial.” Spine. June 17, 2024. https://doi.org/10.1097/BRS.0000000000005075
2.    Van Dijk, et al. eCM. 2021; 41:756-73.
3.    Duan, et al. eCM. 2019; 37:60-73.
4.    Van Dijk, et al. Clin Spine Surg. 2020;33(6): E276-E287.
5.    Van Dijk, et al. JOR Spine. 2018 ; e1039
6.    Van Dijk, et al. J Biomed Mater Res. Part B: Appl Biomater.
*MagnetOs was mixed with venous blood
†Results from in vivo laboratory testing may not be predictive of clinical experience in humans. For important safety and intended use information please visit kurosbio.com.
‡MagnetOs is not cleared by the FDA or TGA as an osteoinductive bone graft.
§MagnetOs has been proven to generate more predictable fusions than two commercially available alternatives in an ovine model of posterolateral fusion.

For further information, please contact:

Kuros Biosciences AG 
Daniel Geiger
Chief Financial Officer
Tel +41 44 733 47 41
daniel.geiger@kurosbio.com
Investors
Gilmartin Group
Vivian Cervantes
Tel: +1 332.895.3220 
vivian.cervantes@gilmartinir.com


End of Media Release



1930093  25.06.2024 CET/CEST

show this